Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 5071, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35332235

RESUMO

Cyclophosphamide (CYP)-induced cystitis is a rodent model that shares many features common to the cystitis occurring in patients, including detrusor overactivity (DO). Platelet-derived growth factor receptor alpha positive (PDGFRα+) cells have been proposed to regulate muscle excitability in murine bladders during filling. PDGFRα+ cells express small conductance Ca2+-activated K+ channels (predominantly SK3) that provide stabilization of membrane potential during filling. We hypothesized that down-regulation of the regulatory functions of PDGFRα+ cells and/or loss of PDGFRα+ cells generates the DO in CYP-treated mice. After CYP treatment, transcripts of Pdgfrα and Kcnn3 and PDGFRα and SK3 protein were reduced in detrusor muscle extracts. The distribution of PDGFRα+ cells was also reduced. Inflammatory markers were increased in CYP-treated detrusor muscles. An SK channel agonist, CyPPA, increased outward current and hyperpolarization in PDGFRα+ cells. This response was significantly depressed in PDGFRα+ cells from CYP-treated bladders. Contractile experiments and ex vivo cystometry showed increased spontaneous contractions and transient contractions, respectively in CYP-treated bladders with a reduction of apamin sensitivity, that could be attributable to the reduction in the SK conductance expressed by PDGFRα+ cells. In summary, PDGFRα+ cells were reduced and the SK3 conductance was downregulated in CYP-treated bladders. These changes are consistent with the development of DO after CYP treatment.


Assuntos
Cistite , Receptor alfa de Fator de Crescimento Derivado de Plaquetas , Animais , Apamina , Ciclofosfamida/efeitos adversos , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo
2.
Sci Rep ; 11(1): 16268, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34381120

RESUMO

Volume accommodation occurs via a novel mechanism involving interstitial cells in detrusor muscles. The interstitial cells in the bladder are PDGFRα+, and they restrain the excitability of smooth muscle at low levels and prevents the development of transient contractions (TCs). A common clinical manifestation of spinal cord injury (SCI)-induced bladder dysfunction is detrusor overactivity (DO). Although a myogenic origin of DO after SCI has been suggested, a mechanism for development of SCI-induced DO has not been determined. In this study we hypothesized that SCI-induced DO is related to loss of function in the regulatory mechanism provided by PDGFRα+ cells. Our results showed that transcriptional expression of Pdgfra and Kcnn3 was decreased after SCI. Proteins encoded by these genes also decreased after SCI, and a reduction in PDGFRα+ cell density was also documented. Loss of PDGFRα+ cells was due to apoptosis. TCs in ex vivo bladders during filling increased dramatically after SCI, and this was related to the loss of regulation provided by SK channels, as we observed decreased sensitivity to apamin. These findings show that damage to the mechanism restraining muscle contraction during bladder filling that is provided by PDGFRα+ cells is causative in the development of DO after SCI.


Assuntos
Contração Muscular/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/fisiologia , Traumatismos da Medula Espinal/complicações , Bexiga Urinária Hiperativa/etiologia , Bexiga Urinária/metabolismo , Bexiga Urinária/fisiopatologia , Animais , Apamina/metabolismo , Apoptose , Expressão Gênica , Camundongos , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Canais de Potássio Ativados por Cálcio de Condutância Baixa/genética , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Traumatismos da Medula Espinal/genética , Bexiga Urinária/citologia , Bexiga Urinária/patologia , Bexiga Urinária Hiperativa/fisiopatologia
3.
Vet Sci ; 9(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35051085

RESUMO

This study aimed to determine the prevalence of several pathovirotypes and evaluate the association of haemolysis with the virotypes of pathogenic E. coli isolated from post-weaning piglets in South Korea from 2015 to 2019. We isolated 890 E. coli and tested for O-serogroups, virulence genes, haemolysis, and multilocus sequence typing. The predominant virotypes were STb:EAST1:AIDA-I, F18b:Stx2e:AIDA-I, F18:STa:STb:Stx2e, and eae:Paa in enterotoxigenic E. coli (ETEC), Shiga toxin-producing E. coli (STEC), ETEC/STEC, and enteropathogenic E. coli (EPEC), respectively. Regarding serogroups, O139, O149, O141, and O121 were mostly detected in F18:Stx2e:AIDA-I, F4:LT:STb:EAST1, F18:STa:STb, and F18:Stx2e:EAST1, respectively. There was a significant change in the frequency of the O141:F18ac:STa:STb (an increase from 1.6% to 10.1%) and O139:F18ab:Stx2e:AIDA-I (a decrease from 13.0% to 5.3%) virotypes in ETEC and STEC, respectively, from 2015 to 2019. The O141:F18ac:STa:STb virotype was mostly detected in the central area and was spreading to the southern area. The odds ratios between haemolysis and virotypes were 11.0, 6.25, and 8.57 in F18:STa:STb, F18:Stx2e:AIDA-I, and F4:LT:STb:EAST1, respectively. Our findings provide insights regarding the recent prevalence of pathogenic E. coli in South Korea and could be used for the development of vaccines for E. coli responsible for PWD and ED in post-weaning piglets.

4.
Transl Oncol ; 13(2): 233-240, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31869747

RESUMO

BACKGROUND: Alpha-type platelet-derived growth factor receptor (PDGFRα) is a cell surface tyrosine kinase receptor for members of the platelet-derived growth factor family. PDGFRα plays an important role in the regulation of several biological processes and contributes to the pathophysiology of a broad range of human cancers, including glioma. Here, we hypothesize that the genes directly or indirectly influenced by PDGFRα might be useful for prognosis in glioma. METHODS: By comparing the genome-wide gene expression pattern between PDGFRα+ and PDGFRα- cells from human oligodendrocyte progenitor, we defined the genes potentially influenced by PDGFRα. RESULTS: The PDGFRα-influenced genes are strongly associated with cancer-related pathways. We subsequently developed a prognostic gene signature derived from the PDGFRα-influenced genes. This gene signature is able to predict clinical outcome of glioma. This signature is also independent of traditional prognostic factors of glioma. Resampling tests indicate that the prognostic power of this gene signature outperforms random gene sets selected from human genome. More importantly, this signature is superior to the random gene signatures selected from glioma related genes. CONCLUSIONS: Despite the absence of clear elucidation of molecular mechanisms, this study suggests the vital role of PDGFRα in carcinogenesis. Furthermore, the PDGFRα-based gene signature provides a promising prognostic tool for glioma and validates PDGFRα as a novel and effective therapeutic target in human cancers.

5.
Annu Rev Pharmacol Toxicol ; 58: 603-623, 2018 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-28992432

RESUMO

Intrinsic mechanisms to restrain smooth muscle excitability are present in the bladder, and premature contractions during filling indicate a pathological phenotype. Some investigators have proposed that c-Kit+ interstitial cells (ICs) are pacemakers and intermediaries in efferent and afferent neural activity, but recent findings suggest these cells have been misidentified and their functions have been misinterpreted. Cells reported to be c-Kit+ cells colabel with vimentin antibodies, but vimentin is not a specific marker for c-Kit+ cells. A recent report shows that c-Kit+ cells in several species coexpress mast cell tryptase, suggesting that they are likely to be mast cells. In fact, most bladder ICs labeled with vimentin antibodies coexpress platelet-derived growth factor receptor α (PDGFRα). Rather than an excitatory phenotype, PDGFRα+ cells convey inhibitory regulation in the detrusor, and inhibitory mechanisms are activated by purines and stretch. PDGFRα+ cells restrain premature development of contractions during bladder filling, and overactive behavior develops when the inhibitory pathways in these cells are blocked. PDGFRα+ cells are also a prominent cell type in the submucosa and lamina propria, but little is known about their function in these locations. Effective pharmacological manipulation of bladder ICs depends on proper identification and further study of the pathways in these cells that affect bladder functions.


Assuntos
Células Intersticiais de Cajal/fisiologia , Bexiga Urinária/fisiologia , Animais , Humanos , Células Intersticiais de Cajal/metabolismo , Músculo Liso/metabolismo , Músculo Liso/fisiologia , Transdução de Sinais/fisiologia , Bexiga Urinária/metabolismo
6.
Sci Rep ; 7(1): 12245, 2017 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-28947806

RESUMO

During filling, urinary bladder volume increases dramatically with little change in pressure. This is accomplished by suppressing contractions of the detrusor muscle that lines the bladder wall. Mechanisms responsible for regulating detrusor contraction during filling are poorly understood. Here we describe a novel pathway to stabilize detrusor excitability involving platelet-derived growth factor receptor-α positive (PDGFRα+) interstitial cells. PDGFRα+ cells express small conductance Ca2+-activated K+ (SK) and TRPV4 channels. We found that Ca2+ entry through mechanosensitive TRPV4 channels during bladder filling stabilizes detrusor excitability. GSK1016790A (GSK), a TRPV4 channel agonist, activated a non-selective cation conductance that coupled to activation of SK channels. GSK induced hyperpolarization of PDGFRα+ cells and decreased detrusor contractions. Contractions were also inhibited by activation of SK channels. Blockers of TRPV4 or SK channels inhibited currents activated by GSK and increased detrusor contractions. TRPV4 and SK channel blockers also increased contractions of intact bladders during filling. Similar enhancement of contractions occurred in bladders of Trpv4 -/- mice during filling. An SK channel activator (SKA-31) decreased contractions during filling, and rescued the overactivity of Trpv4 -/- bladders. Our findings demonstrate how Ca2+ influx through TRPV4 channels can activate SK channels in PDGFRα+ cells and prevent bladder overactivity during filling.


Assuntos
Células Musculares/química , Células Musculares/fisiologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/análise , Bexiga Urinária/fisiologia , Animais , Células Cultivadas , Camundongos , Canais de Potássio Ativados por Cálcio de Condutância Baixa , Canais de Cátion TRPV
7.
Am J Physiol Renal Physiol ; 309(6): F569-74, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26202222

RESUMO

Purines induce transient contraction and prolonged relaxation of detrusor muscles. Transient contraction is likely due to activation of inward currents in smooth muscle cells, and prolonged relaxation may be due to activation of small-conductance Ca(2+)-activated K(+) (SK) channels via P2Y1 receptors expressed by detrusor PDGF receptor (PDGFR)α(+) cells. We investigated whether other subtypes of P2Y receptors are involved in the activation of SK channels in PDGFRα(+) cells of detrusor muscles. Quantitative analysis of transcripts revealed that P2ry2, P2ry4, and P2ry14 are expressed in PDGFRα(+) cells of P2ry1-deficient/enhanced green fluorescent protein (P2ry1(-/-)/eGFP) mice at similar levels as in wild-type mice. UTP, a P2Y2/P2Y4 agonist, activated large outward currents in detrusor PDGFRα(+) cells. SK channel blockers and an inhibitor of phospholipase C completely abolished currents activated by UTP. In contrast, UTP activated nonselective cation currents in smooth muscle cells. Under current-clamp (current = 0), UTP induced significant hyperpolarization of PDGFRα(+) cells. MRS2500, a selective P2Y1 antagonist, did not affect UTP-activated outward currents in PDGFRα(+) cells from wild-type mice, and activation of outward currents by UTP was retained in P2ry1(-/-)/eGFP mice. As a negative control, we tested the effect of MRS2693, a selective P2Y6 agonist. This compound did not activate outward currents in PDGFRα(+) cells, and currents activated by UTP were unaffected by MRS2578, a selective P2Y6 antagonist. The nonselective P2Y receptor blocker suramin inhibited UTP-activated outward currents in PDGFRα(+) cells. Our data demonstrate that P2Y2 and/or P2Y4 receptors function, in addition to P2Y1 receptors, in activating SK currents in PDGFRα(+) cells and possibly in mediating purinergic relaxation responses in detrusor muscles.


Assuntos
Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/agonistas , Uridina Trifosfato/farmacologia , Bexiga Urinária/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Camundongos , Músculo Liso/metabolismo , Miócitos de Músculo Liso/metabolismo , Técnicas de Patch-Clamp , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2Y1/metabolismo , Receptores Purinérgicos P2Y2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Bexiga Urinária/efeitos dos fármacos
8.
J Physiol ; 592(6): 1283-93, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24396055

RESUMO

Purines induce transient contraction and prolonged relaxation of detrusor muscles. Transient contraction could be due to activation of inward currents in smooth muscle cells, but the mechanism of purinergic relaxation has not been determined. We recently reported a new class of interstitial cells in detrusor muscles and showed that these cells could be identified with antibodies against platelet-derived growth factor receptor-α (PDGFRα(+) cells). The current density of small conductance Ca(2+)-activated K(+) (SK) channels in these cells is far higher (∼100 times) than in smooth muscle cells. Thus, we examined purinergic receptor (P2Y) mediated SK channel activation as a mechanism for purinergic relaxation. P2Y receptors (mainly P2ry1 gene) were highly expressed in PDGFRα(+) cells. Under voltage clamp conditions, ATP activated large outward currents in PDGFRα(+) cells that were inhibited by blockers of SK channels. ATP also induced significant hyperpolarization under current clamp conditions. A P2Y1 agonist, MRS2365, mimicked the effects of ATP, and a P2Y1 antagonist, MRS2500, inhibited ATP-activated SK currents. Responses to ATP were largely abolished in PDGFRα(+) cells of P2ry1(-/-) mice, and no response was elicited by MRS2365 in these cells. A P2X receptor agonist had no effect on PDGFRα(+) cells but, like ATP, activated transient inward currents in smooth muscle cells (SMCs). A P2Y1 antagonist decreased nerve-evoked relaxation. These data suggest that purines activate SK currents via mainly P2Y1 receptors in PDGFRα(+) cells. Our findings provide an explanation for purinergic relaxation in detrusor muscles and show that there are no discrete inhibitory nerve fibres. A dual receptive field for purines provides the basis for inhibitory neural regulation of excitability.


Assuntos
Músculo Liso/fisiologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/fisiologia , Receptores Purinérgicos P2Y1/fisiologia , Bexiga Urinária/fisiologia , Difosfato de Adenosina/análogos & derivados , Difosfato de Adenosina/farmacologia , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Nucleotídeos de Desoxiadenina/farmacologia , Estimulação Elétrica , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Relaxamento Muscular/efeitos dos fármacos , Relaxamento Muscular/fisiologia , Músculo Liso/efeitos dos fármacos , Agonistas do Receptor Purinérgico P2Y/farmacologia , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2Y1/deficiência , Receptores Purinérgicos P2Y1/genética , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Bexiga Urinária/citologia , Bexiga Urinária/efeitos dos fármacos
9.
J Physiol ; 591(2): 503-13, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23148317

RESUMO

We sought to characterize molecular expression and ionic conductances in a novel population of interstitial cells (PDGFRα(+) cells) in murine bladder to determine how these cells might participate in regulation of detrusor excitability. PDGFRα(+) cells and smooth muscle cells (SMCs) were isolated from detrusor muscles of PDGFRα(+)/eGFP and smMHC/Cre/eGFP mice and sorted by FACS. PDGFRα(+) cells were highly enriched in Pdgfra (12 fold vs. unsorted cell) and minimally positive for Mhc (SMC marker), Kit (ICC marker) and Pgp9.5 (neuronal marker). SK3 was dominantly expressed in PDGFRα(+) cells in comparison to SMCs. αSlo (BK marker) was more highly expressed in SMCs. SK3 protein was observed in PDGFRα(+) cells by immunohistochemistry but could not be resolved in SMCs. Depolarization evoked voltage-dependent Ca(2+) currents in SMCs, but inward current conductances were not activated in PDGFRα(+) cells under the same conditions. PDGFRα(+) cells displayed spontaneous transient outward currents (STOCs) at potentials positive to -60 mV that were inhibited by apamin. SK channel modulators, CyPPA and SKA-31, induced significant hyperpolarization of PDGFRα(+) cells and activated SK currents under voltage clamp. Similar responses were not resolved in SMCs at physiological potentials. Single channel measurements confirmed the presence of functional SK3 channels (i.e. single channel conductance of 10 pS and sensitivity to intracellular Ca(2+)) in PDGFRα(+) cells. The apamin-sensitive stabilizing factor regulating detrusor excitability is likely to be due to the expression of SK3 channels in PDGFRα(+) cells because SK agonists failed to elicit resolvable currents and hyperpolarization in SMCs at physiological potentials.


Assuntos
Potenciais de Ação , Miócitos de Músculo Liso/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/fisiologia , Animais , Apamina/farmacologia , Benzotiazóis/farmacologia , Cálcio/metabolismo , Expressão Gênica , Células Intersticiais de Cajal/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Potássio/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/agonistas , Canais de Potássio Ativados por Cálcio de Condutância Baixa/genética , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Bexiga Urinária/citologia
10.
J Neurosci Res ; 83(7): 1373-80, 2006 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-16493687

RESUMO

We investigated the mechanosensitivity of voltage-gated K+ channel (VGPC) currents by using whole-cell patch clamp recording in rat trigeminal ganglion (TG) neurons. On the basis of biophysical and pharmacological properties, two types of VGPC currents were isolated. One was transient (I(K,A)), the other sustained (I(K,V)). Hypotonic stimulation (200 mOsm) markedly increased both I(K,A) and I(K,V) without affecting their activation and inactivation kinetics. Gadolinium, a well-known blocker of mechanosensitive channels, failed to block the enhancement of I(K,A) and I(K,V) induced by hypotonic stimulation. During hypotonic stimulation, cytochalasin D, an actin-based cytoskeletal disruptor, further increased I(K,A) and I(K,V), whereas phalloidin, an actin-based cytoskeletal stabilizer, reduced I(K,A) and I(K,V). Confocal imaging with Texas red-phalloidin showed that actin-based cytoskeleton was disrupted by hypotonic stimulation, which was similar to the effect of cytochalasin D. Our results suggest that both I(K,A) and I(K,V) are mechanosensitive and that actin-based cytoskeleton is likely to regulate the mechanosensitivity of VGPC currents in TG neurons.


Assuntos
Citoesqueleto de Actina/metabolismo , Mecanorreceptores/metabolismo , Mecanotransdução Celular/fisiologia , Neurônios Aferentes/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Gânglio Trigeminal/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Células Cultivadas , Citocalasina D/farmacologia , Soluções Hipotônicas/farmacologia , Mecanotransdução Celular/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Microscopia Confocal , Neurônios Aferentes/citologia , Neurônios Aferentes/efeitos dos fármacos , Inibidores da Síntese de Ácido Nucleico/farmacologia , Técnicas de Patch-Clamp , Faloidina/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Gânglio Trigeminal/citologia , Gânglio Trigeminal/efeitos dos fármacos , Xantenos
11.
Brain Res ; 1072(1): 208-14, 2006 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-16427032

RESUMO

It has been demonstrated that spinal microglial activation is involved in formalin-induced pain and that minocycline, an inhibitor of microglial activation, attenuate behavioral hypersensitivity in neuropathic pain models. We investigated whether minocycline could have any anti-nociceptive effect on inflammatory pain, after intraperitonial administration of minocycline, 1 h before formalin (5%, 50 microl) injection into the plantar surface of rat hindpaw. Minocycline (15, 30, and 45 mg/kg) significantly decreased formalin-induced nociceptive behavior during phase II, but not during phase I. The enhancement in the number of c-Fos-positive cells in the L4-5 spinal dorsal horn (DH) and the magnitude of paw edema induced by formalin injection during phase II were significantly reduced by minocycline. Minocycline inhibited synaptic currents of substantia gelatinosa (SG) neurons in the spinal DH, whereas membrane electrical properties of dorsal root ganglion neurons were not affected by minocycline. Analysis with OX-42 antibody revealed the inhibitory effect of minocycline on microglial activation 3 days after formalin injection. These results demonstrate the anti-nociceptive effect of minocycline on formalin-induced inflammatory pain. In addition to the well-known inhibitory action of minocycline on microglial activation, the anti-edematous action in peripheral tissue, as well as the inhibition of synaptic transmission in SG neurons, is likely to be associated with the anti-nociceptive effect of minocycline.


Assuntos
Anti-Inflamatórios , Formaldeído/toxicidade , Inflamação/prevenção & controle , Minociclina/uso terapêutico , Dor/prevenção & controle , Animais , Modelos Animais de Doenças , Edema/induzido quimicamente , Edema/prevenção & controle , Eletrofisiologia , Genes fos/efeitos dos fármacos , Membro Posterior , Inflamação/induzido quimicamente , Injeções Intraperitoneais , Masculino , Minociclina/administração & dosagem , Dor/induzido quimicamente , Ratos , Ratos Sprague-Dawley , Medula Espinal/efeitos dos fármacos , Medula Espinal/fisiologia , Medula Espinal/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...